462,597 research outputs found

    Resource Constrained Structured Prediction

    Full text link
    We study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining prediction performance. We show that training the adaptive feature generation system can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two structured prediction tasks, optical character recognition (OCR) and dependency parsing and show strong performance in reduction of the feature costs without degrading accuracy

    Fully Adaptive Newton-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

    Full text link
    In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples

    Wrinkling prediction with adaptive mesh refinement

    Get PDF
    An adaptive mesh refinement procedure for wrinkling prediction analyses is presented. First the\ud critical values are determined using Hutchinson’s bifurcation functional. A wrinkling risk factor is then\ud defined and used to determined areas of potential wrinkling risk. Finally, a mesh refinement is operate

    An hphp-Adaptive Newton-Galerkin Finite Element Procedure for Semilinear Boundary Value Problems

    Full text link
    In this paper we develop an hphp-adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an hphp-version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hphp-adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.Comment: arXiv admin note: text overlap with arXiv:1408.522

    Adaptive scanning - a proposal how to scan theoretical predictions over a multi-dimensional parameter space efficiently

    Full text link
    A method is presented to exploit adaptive integration algorithms using importance sampling, like VEGAS, for the task of scanning theoretical predictions depending on a multi-dimensional parameter space. Usually, a parameter scan is performed with emphasis on certain features of a theoretical prediction. Adaptive integration algorithms are well-suited to perform this task very efficiently. Predictions which depend on parameter spaces with many dimensions call for such an adaptive scanning algorithm.Comment: 8 pages, 4 figure

    Nonlinear predictive control applied to steam/water loop in large scale ships

    Get PDF
    In steam/water loop for large scale ships, there are mainly five sub-loops posing different dynamics in the complete process. When optimization is involved, it is necessary to select different prediction horizons for each loop. In this work, the effect of prediction horizon for Multiple-Input Multiple-Output (MIMO) system is studied. Firstly, Nonlinear Extended Prediction Self-Adaptive Controller (NEPSAC) is designed for the steam/water loop system. Secondly, different prediction horizons are simulated within the NEPSAC algorithm. Based on simulation results, we conclude that specific tuning of prediction horizons based on loop’s dynamic outperforms the case when a trade-off is made and a single valued prediction horizon is used for all the loops
    • …
    corecore